
Predicting the Outcome of Football Matches with
Supervised Learning

João Paulo Abelha
Porto, Portugal

up201706412@fe.up.pt

João Rafael Varela
Porto, Portugal

up201706072@fe.up.pt

Vı́tor Hugo Barbosa
Porto, Portugal

up201703591@fe.up.pt

Abstract—This article presents the details about our approach
to predict results of football games using data from the FIFA
game. After a brief introduction this document provides a
description of the problem and analysis of the used data set.
Later, it explains our approach to the stated problem and
the thinking process behind it, as well as various performance
comparisons between different machine learning algorithms and
between different subsets of data used to train the classifiers.

Index Terms—machine learning, supervised learning, deep
learning, feature selection, decision trees, random forest, k-
nearest neighbor, neural network

I. INTRODUCTION

Machine learning is increasingly becoming a part of our
daily lives and has shown promising results in the domains
of classification and prediction. One of the expanding areas
necessitating good predictive accuracy is sport prediction, due
to the large monetary amounts involved in betting. In addition,
club managers and owners are striving for classification mod-
els so that they can understand and formulate strategies needed
to win matches. These models are based on numerous factors
involved in the games, such as the results of historical matches,
player performance indicators, and opposition information.

One of the most important tasks of machine learning con-
sists in predicting a label for previously unseen data (classi-
fication). This classification is usually done by a predictive
model that uses training and test data to increase its accuracy
in correctly predicting the results for a given problem. This is
known as supervised learning, a branch of machine learning.

Predicting the outcome of a football game is itself a
classification problem, as we can predict a game to result in
a win, loss or draw.

II. PROBLEM DEFINITION

A. Goals

The main goal of the work developed was to build different
classifiers to accurately predict the results of football games,
maximizing their performances and comparing them between
the different classifiers.

Performance isn’t everything, so we also considered relevant
comparing the classifiers’ performance using different sets of
features from the dataset. Using less data can sometimes lead
to better results and will result in faster training times.

B. The Dataset

The original dataset [1] contains over 25 thousand european
football matches as well as some statistics from the players
playing on it (sourced from EA Sports’ FIFA video game
series). This games all happened between the 2008 and 2016
seasons, and were played in 11 different regions (on their
respective main championship). For each match, the dataset
also contains the teams playing on it, the result and odds
sourced from 10 different major betting websites.

III. APPROACH

Let alone the different algorithms and techniques used to
reach our goals, we followed a very traditional supervised
learning pipeline.

Fig. 1. Supervised Learning Pipeline

A. Data Understanding

To better understand the data we were working with we
started with an exploratory analysis by measuring a set of
different statistics and converting the data to a more user
friendly format, such as plots or graphics.

Exploring the data is a very important step since it allows
us to detect important details on the data such as patterns,
tendencies or relationships between different features, making
it easier to later reduce the problem’s dimensionality (since
some features might be ambiguous). It also permits us to
determine the data quality by finding any outliers, noise input,
missing values or even duplicate data (which must be treated
accordingly).

In order to understand if our classifiers will be able to pre-
dict game results for different championships, it is important



that the data set contains a decent amount of games for each
of the 10 different leagues, which we’ve confirmed:

Fig. 2. Number of Matches By League

When analyzing the different tables from the data set we
haven’t found many problems, except for the fact that some
players had all of their attributes missing. We tackle this
problem later by calculating the team’s average to substitute
the null attribute.

After making an in-depth analysis to the different player’s
attributes, we have come to the conclusion that most of them
do not have a particular strong relationship with a player’s
overall rating, but instead this overall depends of the players
features grouped together.

Fig. 3. Weight of Attributes on Player’s Overall Rating

After filtering the data, we ended up with a data set
containing information about 21374, from the original 25
thousand, which we still consider a fair amount to be worked
with.

B. Pre-processing

Data preprocessing is an integral step in Machine Learning
as the quality of data and the useful information that can be
derived from it directly affects the ability of our model to
learn. Therefore, it is extremely important that we preprocess
our data before feeding it into our model.

Typical components of this step include aggregating data,
reducing data set size, reducing dimensionality (number of fea-
tures), data normalization and so on. Applying this techniques
can bring important advantages such as reducing the training
time, reducing the chances of overfitting (when the classifier
function is too close to the data set training), and even leading
to a higher predictive accuracy in some cases.

1) Data Aggregation: When aggregating the data, which
wasn’t that easy of a job due to how spread the data we wanted
was across different tables, we opted to include, for each
match, the overall of each player instead of some of their other
attributes. We did this not only because our data set would
have too many attributes, but also because the data analysis
showed us that those attributes were somewhat ambiguous and
were only useful when grouped together, which they are in the
overall rating calculated by FIFA.

Besides, we also included the average odds for each possible
game result (win,draw and loss) since the odds from the
different websites never differentiated too much from each
other.

We also thought it would be interesting to include some
statistics from the previous games, since momentum is such
an important thing in football, and from the games played
between the same two teams. Therefore we aggregated, for
each team on the match and from the previous 10 games, the
difference in goals and the number of wins, as well as the
number of games won against each other.

2) Dimensionality Reduction: At this point, our data set
holds exactly 31 different attributes which might seem a lot,
but not for a complex game like football where an enormous
amount of variables can influence the result of a game.
Nevertheless, we applied 3 different techniques so we could
try reducing the number of features.

Fig. 4. Univariate Selection (top 10 features)



We started by the Univariate Selection technique which
uses statistical tests that show how strong is the relationship
between a feature and the output variable. As expected, the
results shows us that the odds of the game team winning
(odds home) and losing (odds away) have indeed an impor-
tant role on predicting the result. The same can’t be said
for the drawing odds, probably due to it’s unpredictability.
The statistics we added about the latest previous games are
somewhat important too, but much less than the mentioned
odds.

The second technique works similarly from the first one
and measures the relevance of a feature towards the output
variable. That is Feature Weighting

Fig. 5. Feature Weighting (top 10 features)

This time, the odds of winning or losing show up relevant
again. The same can not be said for the other features which
all fall in the same category.

At last, we applied one of the most powerful and most used
techniques when it comes to dimensionality reduction, which
is the Principal Component Analysis (PCA). In a nutshell,
PCA makes use of the data covariance and it’s eigenvalue
decomposition, calculating the most relevant features on the
data set.

Fig. 6. PCA (top 10 features)

Surprisingly, this time around the odds were not chosen as
a relevant feature and the statistics from the latest previous
games came on top.

By analyzing the results of the 3 algorithms applied, we
concluded that the odds and statistics from the latest games
should be kept on our data set. The rest of the features consist
on the overall ratings of the twenty-two players on the field
which have not shown a particular relevance from the result

of the game. This does not mean that the players’ skills have
no impact on the game’s result, but in this case it might mean
that those ratings are only relevant when grouped together (as a
team). We confirmed this idea by applying the 3 dimensionaly
reduction techniques again, but this time grouping the overall
ratings for each team. Here is how the Feature Weighting
results came out to be this time:

Fig. 7. Feature Weighting Selection (top 10 features)

We can see that when grouped together (average) the
players’ overall ratings are indeed important for the game’s
result.

Not knowing for sure that aggregating these players’ ratings
would result in better accuracy from the classifiers, we decided
to kept going with both data sets: one with twenty-two players
overall ratings (which we will call normal data set) and other
with the average of those ratings for each team (”minified”
data set).

3) Data Normalization: The goal of normalization is to
change the values of numeric columns in the data set to a
common scale, without distorting differences in the ranges of
values. This is a very importance step since variables that are
measured at different scales do not contribute equally to the
analysis and might end up creating a bias. This happens all
across our data set, for instance the overall ratings range from
around 50 to 100 whereas the number of wins in the last
10 games will always range from 0 to 10. After calling the
following function on our data frames, all the values were
nicely spread between 0 and 1.

def normalize(df):
result = df.copy()
for feature_name in df.columns:

max_value = df[feature_name].max()
min_value = df[feature_name].min()
result[feature_name] =
(df[feature_name] - min_value) /

(max_value - min_value)
return result

C. Data Mining

After having our pre-processed data, we are now ready
to start building our classifiers. Classifiers (or models) are
functions that will return an output for a given input and they
can be used in some different ways.



In a supervised learning model, the algorithm learns on a
labeled data set (game result in our case), providing an answer
key that the algorithm can use to evaluate its accuracy on
training data.

We wanted to try out some different supervised learning
algorithms so we could compare results between them and
know which is the best to solve this kind of problem. Hence,
we tried 5 different algorithms: Decision Trees, Random
Forest, K-Nearest Neighbor, Support Vector Machines and
Neural Networks. For each, we invested a lot of resources in
testing and tuning parameters: we’ve done this by using Grid
Search which is the process of scanning the data to configure
optimal parameters for a given model.

Before feeding the data to our classifiers there is a crucial
step that aims to avoid overfitting and allows us to test how
well our model is able to get trained by some data and then
predict data it hasn’t seen yet. In other words, it allows us to
generalize our results. That step can be done using the K-cross
fold validation technique.

The algorithm splits the original data set into k subsets, use
one of the subsets as the testing set, and the rest of the subsets
are used as the training set. This process is then repeated k
times such that each subset is used as the testing set exactly
once. Considering the size of our data set, we chose a k value
of 10.

It’s important to notice that we are working with an un-
balanced data set: not all classes have the same number of
elements (e.g. there are more wins than losses). This could
represent a problem making our classifiers biased. Therefore,
we ended up using the Stratified K-cross fold validation
technique, which does the same thing that the original K-cross
fold validation does, while maintaining the class proportions
the same across all of the folds, which is vital for maintaining
a representative subset of our data set.

IV. EXPERIMENTAL EVALUATION

The job is not done right after building the classifiers. One
of the most important steps of this pipeline is testing and an-
alyzing the results so we can reach well justified conclusions.
We started by applying the Decision Tree algorithm:

Fig. 8. Decision Tree Accuracy

Fig. 9. Decision Tree Accuracy (”minified” data set)

We were able to obtain an average accuracy of 52%, with
a training time of 31 seconds (includes the paremeter tunning
with Grid Search). When using the ”minified” data set we
achieved exactly the same accuracy. This was replicated across
all algorithms (the results obtained from both data sets were
always very alike), so from now on, only the ”minified” data
set results will be stated. This means we could reduce the
data set from 31 attributes to just 11 while maintaining the
performance.

With the Random Forest we obtained similar results, and
because this algorithm uses a set of Decision Trees this means
that there wasn’t much room for improvement with this data.

Fig. 10. Random Forest Accuracy

Fig. 11. Random Forest vs Decision Tree



This goes to show that a more complex algorithm does not
automatically ensure better results. In this case, the simplest
one (Decision Tree) achieved the better accuracy even when
the Random Forest took 879 seconds to train. For the K-
Nearest Neighbors and Support Vector Machine algorithms,
the results were somewhat disappointing:

Fig. 12. K-Nearest Neighbors Accuracy

Fig. 13. Support Vector Machine Accuracy

We could not let out the usage of one of the most powerful
tools in the deep learning field: neural networks. We’ve tried
some different architectures for those networks and came
across the best results our own simple custom model with
7 hidden layers.

Fig. 14. Neural Network Accuracy across the Epochs

The model was able to reach it’s highest performance at
around the 30th epoch, starting to overfit after that. The
training took only about 25 seconds. Once more, we were
not able to achieve better results than with the decision tree,
reaching an accuracy of 52%.

We decided to plot a confusion matrix in order to understand
the classifier’s behaviour.

Fig. 15. Neural Network Confusion Matrix

The model clearly has problems to predict draws, opting
to never even predict it. This happens due to the natural
unpredictability of a draw happening. Even for teams that have
somewhat close ratings, it’s more likely that someone will win
over the other than a draw. This difficulty is present in every
classifier we have tried.

Here’s how the classifiers compare themselves in terms of
metrics:

Fig. 16. Classifiers Comparison

To conclude the experiments, we though it would be appro-
priate to compare our results with the bookkeeper odds. After
all, it would be nice to predict games even better than those
odds.



The odds could predict correctly 51% of the matches, very
similar to our best results. However, they face the same flaw
of not being very good at predicting draws.

Fig. 17. Odds Prediction Confusion Matrix

V. CONCLUSIONS

In summary, the results of the project reflect a solid effort in
predicting match outcomes in football using machine learning
techniques. By comparing multiple classification algorithms in
combination with dimensionality reduction, it was discovered
a simple algorithm such as the Decision Tree provided the
best results. Combining the model selection and tuning process
with cross-validation, the robustness and replicability of results
is ensured.

We believe that our approach can easily be applied to
all sorts of classification problems, since we followed, very
carefully, a pipeline that aims to tackle most of the problems
when it comes to supervised learning classification.

The data from the original data set was in a very raw state,
making it hard for us to chose what aspects of a football match
to take into account for prediction. Nevertheless, we achieved
an accuracy above 50% which is relatively high, considering
the amount of factors that affect the outcome of football games
in real life.

Through the development of this project, we’ve also come to
understand even better how to utilize various machine learning
tools provided by Python libraries and how important it is to
study those tools so we can apply them for the right situations,
in the right way (e.g. changing a simple parameter can result
in much different performances).

VI. IMPROVEMENTS

Even though we achieved satisfactory results there is still
a lot of room for improvement. For starters some other
features could be created which might have resulted in better
performances (e.g. goals difference on the current season).

Including other data sources besides the game FIFA would
be interesting too, not only because some of the game’s

statistics can be considered biased but also because there are
other important aspects that influence a game’s outcome, such
as the coaches, the current classification, etc. We believe we
could even predict draws more accurately this way since there
are some situations where teams are more likely to draw: when
both have similar quality, both teams are low scoring or both
are happy with a draw.

Investigating some more different supervised learning algo-
rithms and techniques could also lead do better results.

REFERENCES

[1] www.kaggle.com/hugomathien/soccer, “European Soccer Database,”
Hugo Mathien, October 2016.


